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SUMMARY

This paper presents the analysis of injection=suction boundary conditions in the context of the �uid–
structure interactions simulation of the incompressible turbulent �ow.
First, the equations used in the modelling of the �uid and the structure are presented, as well as the

numerical methods used in the corresponding solvers. Injection=suction boundary conditions are then
presented with details of di�erent implementation alternatives. Arbitrary Lagrangian–Eulerian (ALE)
approach was also implemented in order to test the injection=suction boundary conditions.
Numerical tests are performed where injection=suction boundary conditions are compared to ALE

simulations. These tests include forced movement of the structure and two-degrees-of-freedom structure
model simulations. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this analysis of �uid–structure interaction problems we investigated the possibility of the
application of injection=suction boundary conditions in the context of the stability analy-
sis of civil engineering constructions (see, for example, References [1–4]). When applying
injection=suction boundary conditions in a �uid–structure interactions simulation, the
e�ects of the cross-section movements are taken into account in the �ow solver by a change
in the boundary conditions (see References [5–7]) in order to avoid more costly arbitrary
Lagrangian–Eulerian (ALE) formulations (see References [8–15]). Di�erent implementations
of injection=suction boundary conditions were already tested in the aeroelastic simulations of
compressible �ows over airfoils (see References [16–19]), including shape optimization and
optimal control applications.
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In civil engineering applications, we are usually dealing with incompressible turbulent �ows.
We opted to use Reynolds-averaged Navier–Stokes (RANS) equations together with simple
turbulence models, such as k–� model with the application of wall-laws [20, 21]. There has
been some discussion References [22–25] whether RANS equations approach can be applied
to unsteady �ows (partly based on the insistence that Reynolds averaging equals temporal
averaging—which is not), where it was proposed that there should be a spectral gap between
the unsteadiness and the turbulence. A more correct criterion for statistical periodicity is that
the frequency spectrum should contain a very narrow spike(s), at a shedding frequency(ies),
representing the mean unsteadiness (see Reference [25]). In the same way, the simulation of
�uid–structure interactions might be carried out using RANS approach as long as there are
some distinct oscillations frequencies (large-scale unsteadiness).
The numerical solver NSIKE (see Reference [26]) is based on P1=P1 �nite element method

for the velocity=pressure pair of variables (U–P) and a P1 discretization for the turbulence
variables (k and �). Chorin’s non-incremental projection method is used to decouple the
velocity and pressure computation (see References [27, 28]). The time discretization is fully
explicit, with Petrov–Galerkin formulation for the intermediate velocity and turbulent variables
computation. The convective part of the equations is solved using a positive streamwise
invariant (PSI) residual distributions scheme [29] and the viscous term is discretized using the
standard Galerkin technique. The pressure equation is solved using a preconditioned conjugate
gradient algorithm.
At �rst, we tested our unstructured solver for various unsteady turbulent incompressible

�ows over a typical viaduct cross-sections (see References [30, 31]) for which experimental
data were available. The results are compared with available experiments.
Variants of injection=suction boundary conditions are then derived and implemented in

our original incompressible solver that had to be adapted. In order to evaluate the be-
haviour of injection=suction boundary conditions we decided to implement the ALE formu-
lation in the solver. In that way, we could compare the two approaches within the same
solver.
Simple tests were performed to evaluate the behaviour of injection=suction boundary con-

ditions (see also Reference [31]). The �rst test concerned the analysis of attached steady
incompressible turbulent �ow over a well-pro�led body such as a NACA pro�le inclined for
a small angle (where the displacement was taken into account by injection=suction boundary
conditions). The second test consisted in imposing a periodic movement to the same pro-
�le (small amplitude rotational oscillations), and comparing the results of simulations using
injection=suction boundary conditions to ALE simulations. And �nally, we repeated the �rst
test for the injection=suction boundary conditions for the �ow over a rectangle pro�le (in this
case, in an unsteady �ow). The results from these tests obtained with di�erent injection=suction
boundary conditions are compared and analysed.
After the preliminary tests, we proceeded with the application of our approach in the stability

analysis of rectangle pro�le.
Usually, the �rst step in aeroelastic investigation is the response of the structure to a forced

perturbation. In this approach no dynamic model is used and a periodic movement is prescribed
for the cross-section (e.g. in a form of torsional oscillations). The hysteresis curves are used to
predict the response of the coupled system by means of engineering criteria. Numerical results
for the rectangle pro�le are compared to the experimental results available in the literature
(see References [1–4]).

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:875–901



INJECTION/SUCTION BOUNDARY CONDITIONS 877

Finally, we use a rigid body dynamics model based on two ordinary di�erential equations
for torsional and vertical displacement of the cross-section. This model uses at each instant
the lift and drag forces produced by the �ow and encapsulates the main structure mechani-
cal characteristics. Numerical simulations are carried out for the rectangle pro�le both with
injection=suction boundary conditions and using ALE formulation and the results are analysed
using the experimental results from the stability analysis in forced movement ([1–3]). We
are interested in the consistency of these results with the ones from the forced movement
analysis.

2. UNSTEADY TURBULENT FLOW COMPUTATIONS

Our unsteady turbulent �ow computations are based on solving the incompressible Reynolds
averaged Navier–Stokes equations with the k–� model in �:

∇ ·U=0 (1)

@tU +U · ∇U +∇P=�−∇ · ((�+ �t)(∇U +∇U T))=0 (2)

@tk +U · ∇k −∇ · ((�+ �t)∇k)= Sk (3)

@t�+U · ∇�−∇ · ((�+ c��t)∇�)= S� (4)

with Sk= 1
2�t |∇U+∇Ut |2−� and S�= 1

2c1k|∇U+∇Ut |2−c2�2=k and �t = c�k2=�, where U , P, �,
k, �, � and �t are, respectively, the mean velocity vector, mean pressure, density, kinetic energy
of turbulence, turbulent dissipation, kinematic viscosity and turbulent viscosity. The constants
values we use, c�=0:09, c1= 0:1296, c2= 11=6 and c�=1=1:4245, are slightly di�erent from
those proposed originally by Launder (these values agree better with experimental data for
the decay of homogeneous turbulence, for more details see the discussion in Reference [30]).
Furthermore, we do not take into account the turbulent contributions in the pressure.
Typically, the boundary of the �ow domain � is divided into three parts @�=�1 ∪�2 ∪�3

where �1 represents the in�ow boundary (with given U , k and �), �2 the out�ow boundary
(no tractions, @k=@n=0 and @�=@n=0) and �3 represents the solid wall where we impose the
wall-laws.
We de�ne the new �ctitious boundary �� in the vicinity of the part of the boundary @�

that corresponds to the solid wall (Figure 1).
In other words, we transform our original domain � in ��=�− B� with

B�= {x − n(x)� : x∈�w; �∈(0; �(x))} (5)

Figure 1. Wall-laws de�nition.
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where usually we take for �(x) a constant value for all the solid boundary (or piecewise
constant). Then we apply on ��:

U · n=0; (S · n · s)s=−u2�s (6)

k=
u2�√c�

�; �=
u3�
	�
min(1; �+ 0:3(1− �)2) (7)

where S=(� + �t)(∇U +∇U T), 	=0:41, �= min(1; y+=10) with y+= u��=�, and s=(U −
(U · n)n)=|U − (U · n)n|. The friction velocity u� is computed using Reichardt wall function

U · s
u�

=2:5 ln(1 + 	y+) + 7:8
(
1− e−y+=11 − y+

11
e−0:33y

+
)

(8)

2.1. Flow solver

Our incompressible solver NSIKE [26] is based on Chorin’s projection method for Navier–
Stokes equations (see References [27, 28]). We use �nite element discretization coupled with
residual distribution techniques [29] (written as Petrov–Galerkin �nite element schemes), based
on P1=P1 elements for the pair of variables velocity=pressure, together with P1 elements for
turbulent variables. The computation of intermediate velocity Ũ , k and � is completely explicit,
while the pressure problem is solved using preconditioned conjugate gradient technique.
Step 1: Intermediate velocity and turbulence variables computation

Let

Vh = { h : �h → R;  h∈C0(�h) :∀Kj∈�h;  h|Kj ∈P1} (9)

J0nh = {
h∈Vd
h ; 
h=0 on �1h; 
h · nh=0 on �3h} (10)

W0h = {wh∈Vh; wh=0 on �1h ∪�3h} (11)

Introducing fully explicit time discretization we can write the following Petrov–Galerkin
formulation for the intermediate velocity and turbulent variables:
Find Ũ n+1

h such that, ∀
h∈J0nh

(
Ũ n+1

h −Un
h

T
; 
h

)
+ (Un

h · ∇Un
h ; 
h) + (Sn

h ;∇
h)−
∫
�3h

Sn
h · n ·
h

+
∑

K;K∈�h

∫
K

(
Ũ n+1

h −Un
h

T
+Un

h · ∇Un
h −∇ · Sn

h

)
· gK
1 (V

n
h ; 
h)=0 (12)

Ũ n+1
h − v′h∈J0nh (13)

where v′h is an approximation of v′ in Vd
h , and v′ is an extension of v in H 1(�)d satisfying

v · n=0 on �3, v being the function de�ning Dirichlet boundary conditions on �1 (we also use
the usual notation (a; b) for the scalar product).
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Find kn+1
h ; �n+1h such that, ∀wh∈W0h

(
kn+1
h − kn

h

T
; wh

)
+ (Un

h · ∇kn
h ; wh) +

(
c�
(kn

h)
2

�nh
∇kn

h ;∇wh

)
− (Sn

k h; wh)

+
∑

K;K∈�h

∫
K

(
kn+1
h − kn

h

T
+Un

h · ∇kn
h −∇ ·

(
c�
(kn

h)
2

�nh
∇kn

h

)
−Sn

k h

)
gK
2 (U

n
h ; k

n
h ; wh)=0

(14)

(
�n+1h − �nh

T
; wh

)
+ (Un

h · ∇�nh; wh) +
(
c�
(kn

h)
2

�nh
∇�nh;∇wh

)
− (Sn

� h; wh)

+
∑

K;K∈�h

∫
K

(
�n+1h − �nh

T
+Un

h · ∇�nh −∇ ·
(
c�
(kn

h)
2

�nh
∇�nh

)
− Sn

� h

)
gK
2 (U

n
h ; �

n
h; wh)=0 (15)

kn+1
h − k ′h∈W0h; �n+1h − �′h∈W0h (16)

where k ′h and �′h are the approximations of functions k ′ and �′ in Vh, where k ′ and �′ are the
functions in H 1(�) that satisfy k ′= k� on �1, k ′= kw on �3, and �′= �� on �1, �′= �w on �3,
respectively.
Let { i}1; :::; N be the basis of V0h= { h∈Vh;  h=0 on �1h}, and let {
i; j}1; :::; N; j=1; :::; d be the

basis of J0nh de�ned as


i;1 = ni i; 
i;2 = s1i  i; 
i;3 = s2i  i; if qi∈�3h (17)


i; j=  i; jej; j=1; : : : ; d elsewhere (18)

with s= s1 + s2, s being the unit tangent de�ned before, and {n; s1; s2} being the local
orthonormal co-ordinate system with positive orientation, de�ned for each node qi and {ej}
represent the canonical basis of Rd. Let { i}1; :::; N be the basis of W0h.
For determining the system of equations for the computation of nodal values Ũ n+1

i; j , kn+1
i

and �n+1i we take the above basis functions as 
h and wh in (12)–(16). We will not apply
the stabilization on the non-stationary term, and that will together with mass lumping (the
Gaussian points of numerical integration coincide with the element nodes) while integrating
non-stationary term lead to the decoupling of the discrete equations for Ũ n+1

i; j ; kn+1
i and �n+1i .

Functions de�ning the stabilization are chosen as gK
1 =�K(Un

h ; 
h)−
h, gK
2 =�K(Un

h ; k
h
n ; wh)−

wh and gK
2 =�K(Un

h ; �
h
n; wh)− wh, with �K given by PSI residual distribution scheme [29].

Step 2: Pressure computation
Let

Q0h= { h∈Vh;  h=0 on �2h} (19)

The Galerkin �nite element formulation of the Poisson problem for ’ is: Find ’n+1
h ∈Q0h such

that, ∀ h∈Q0h ∫
�h

∇’n+1
h · ∇ h=−

∫
�h

∇ · Ũ n+1
h  h (20)
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Figure 2. Rectangle pro�le, Red=20 000, computational mesh, 5412 nodes, 10 426 elements.

Let { i}1; :::; N be the basis of Q0h. Taking these basis functions as  h in previous for-
mulation, together with Dirichlet boundary conditions and the introduction of the �nite ele-
ment discretization leads to the linear system solved using preconditioned conjugate gradient
method.
Step 3: Velocity update

Find Vn+1
h such that, ∀
h∈J0nh

(Vn+1
h ; 
h) = (Ũ n

h ; 
h)− (∇’n+1
h ; 
h) (21)

Ũ n+1
h − v′h∈J0nh (22)

where v′h is an approximation of v′ in Vd
h , and v′ is an extension of v in H 1(�)d satisfying

v · n=0 on �3.

2.2. Numerical results for rectangle pro�le

Our �ow solver has been tested for several unsteady �ows over cylinders of di�erent cross-
section (see also References [30, 26]).
In this analysis, turbulent �ow over a simpli�ed viaduct cross-section, i.e. a rectangu-

lar with width=height ratio c=d=4, is computed. Computations have been carried out for
Red= u∞d=�=20000, using the mesh with ∼ 5400 nodes (see Figure 2). In the wall-laws we
used �=0:005c giving y+ values around 20.
This �ow is more complex than the �ow over a square cylinder, and the recirculation zone

behind the cylinder is more di�cult to predict correctly (see Figure 3).
The periods of the oscillation of lift and drag forces (and the moment around the pro�le

center of gravity) are described by the corresponding Strouhal numbers: StD =fDd=u∞=0:26
and StL =fLd=u∞=0:13 (see Figure 4). These computational values agree very well with the
experimental values given in Reference [1]. Furthermore, computed values of drag and lift

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:875–901
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Figure 3. Rectangle pro�le, Red=20 000, instantaneous iso-|u| contours.
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Figure 4. Rectangle pro�le, Red=20 000, CD and CL coe�cients history.
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coe�cients also agree very well with the experimental values: computed time-averaged drag
coe�cient �cD =0:29 vs experimental time-averaged drag coe�cient �cD; exp∼ 0:3.

3. DOMAINS WITH MOVING BOUNDARIES

In this section, we describe the ingredients used to simulate the boundary movement by
means of both the injection=suction boundary conditions [31, 16, 18, 19], and ALE formulation
(dynamic mesh method) [8–15, 32].
The problem consists in solving the Navier–Stokes equation in a domain �m

F (t) that changes
in time. In particular, when treating �uid–structure interaction problems, it is usually the struc-
ture that changes its position (and shape) in time �m

S (t) and as a consequence the interface
between the �uid domain �F and the structure domain �S is also time dependent �m

F=S(t).
Here, we will be interested in two types of problems. First we will impose a given periodic
movement to the structure, and later we will associate a simple dynamical model with two de-
grees of freedom (angle of rotation around the center of gravity �(t) and vertical displacement
y(t)) that will interact with the �uid through aerodynamical forces exerted on the structure
and used to update the structure position.
We suppose that there exist a reference con�guration (�0S; �

0
F=S; �

0
F) that can be associated

with the actual con�guration (�m
S (t); �

m
F=S(t); �

m
F (t)) at each instant t (see Figure 5).

In other words, to each ∈�0F we can associate x∈�m
F (t) de�ning the transformation

x= x(; t) (23)

The Jacobian of the transformation J and the velocity of the transformation w are de�ned as

J=det
(

@x
@

∣∣∣∣
t

)
; w=

@x
@t

∣∣∣∣


(24)

3.1. Injection=suction boundary conditions

The aim is to take into account the small changes in the shape (position) of the structure
through the boundary conditions applied on the reference con�guration (as the �ow domain).

Ω
F
m

Γ

(t)

F/S
m

ΩS
m

(t)

(t)

Ω
F
0

F/SΓ0
ΩS

0

Figure 5. Problem de�nition: actual con�guration (left), reference con�guration (right).
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Figure 6. Injection/suction boundary conditions.

This approximation reduces the cost of the numerical simulation signi�cantly as it restricts all
in�uence of the change of the shape of the �uid domain �m

F (t) just on the boundary conditions
imposed on �0F=S (see also References [31, 16, 18, 19]).

3.1.1. Injection boundary condition. After a Taylor expansion around the original shape (see
Figure 6, we have

Um · nm=U0 · n0 + �x · ∇(U0 · n0) +O(|�x|2) (25)

where subscript m represents the actual moving shape and 0 the shape of reference (�xed), n0; m
are the unit normals on each shape, and �x is the vector of shape deformation. At �rst order,
using �x · ∇(U0 · n0)= �x · ∇U0 · n0+�x · ∇n0 ·U0 together with �x · ∇n0 ·U0≈U0 · (nm−n0) we
have:

Um · nm=U0 · n0 +U0 · (nm − n0) + �x · ∇U0 · n0 (26)

If we suppose that for a small variation of the shape, U remains almost unchanged while
the normal to the shape has variation of the same order (i.e. |�x| ≈ |�n| ≈O(1), but |�u| ≈O(�),
u0≈ um), we have:

Um · nm=U0 · n0 +U0 · (nm − n0) (27)

Since we are analysing the problem in the �xed frame of reference, we have to take
into account the velocity of the shape (given by the movement de�nition in the context of
forced movement, or computed at every instant in the aeroelastic simulation). This changes
the boundary condition on �m :Um · nm=0 in Um · nm=w · nm with w the velocity of the shape.
Finally, the injection=suction boundary condition we impose on �0 is:

U0 · n0 =w · nm −U0 · (nm − n0) (28)

To improve the accuracy, we can substitute the truncated formula (27) with the complete
expression (26), leading to the following injection=suction boundary condition on �0:

U0 · n0 =w · nm −U0 · (nm − n0)− �x · ∇U0 · n0 (29)

This is an implicit relation on U0. We can use a �xed point method:

Un+1
0 · n0 =wn+1 · nn+1

m −Un
0 · (nn+1

m − n0)− �xn+1 · ∇Un
0 · n0 (30)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:875–901
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3.1.2. No-slip boundary condition. In the context of viscous �ow simulation we have to
satisfy the condition Um=w.
Using the same approach as in (26), we can develop the boundary condition for tangential

velocity

Un+1
0 · s0 =wn+1 · sn+1m −Un

0 · (sn+1m − s0)− �xn+1 · ∇Un
0 · s0 (31)

and use it together with (30) for laminar �ow simulations.

3.1.3. Wall-laws. Still, since we are interested in the simulation of turbulent �ow, we do not
solve our �uid problem up to the wall �w but we use the wall-laws (6)–(7) on �� instead.
We will use the same technique as used in our explicit solver NSIKE for �xed geometry,

where we use Un · s to compute the friction velocity (u�)n from Reichardt equation. (u�)n is
then used in the computation of boundary conditions at n+ 1 step where we need (S · n · s)n
(since we use explicit time integration and we integrate the boundary integral explicitly), kn+1

and �n+1.
In the case of moving boundary, we compute (Sm · nm · sm)n, kn+1

m and �n+1m using the
wall-laws (6)–(7) from (um

� )
n that is here computed from

Um · sm − w · sm
um
�

=2:5 ln(1 + 	y+) + 7:8
(
1− e−y+=11 − y+

11
e−0:33y

+
)

(32)

where Um · sm has to be reconstructed from U0 · s0 using

Um · sm=U0 · s0 + �x · ∇(U0 · s0) (33)

Note that in these expressions Um denotes the velocity at �m;�, i.e. the velocity on the �ctitious
boundary at the distance � from the moving boundary �m (we apply the standard wall-laws
technique), and, therefore, Um 	=w.
In the above expression it is important to note that the constants values have been chosen

to satisfy the experiments on the �xed �at plate (and not the moving one).
Finally, new boundary conditions applied on the boundary of the con�guration of reference

�0; � are computed using:

(S0 · n0 · s0) = (Sm · nm · sm)− �x · ∇(S0 · n0 · s0) (34)

k0 = km − �x · ∇k0 (35)

�0 = �m − �x · ∇�0 (36)

These are implicit relations and we can use the same approach as for U0 · n in (30), i.e. a
�xed point method.
We remark that at this stage we have supposed Um · sm=U0 · s0 in (33), and S0 · n0 · s0 = Sm ·

nm · sm, k0 = km, �0 = �m in (34)–(36).
These conditions are widely used to represent shape deformation and avoid an ALE

formulation [16] in control and optimization problems.
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3.2. ALE formulation (dynamic mesh method)

The ALE formulation is a formulation used for the domains with moving boundaries. Here we
will consider a special class of ALE formulations, the dynamic mesh method (see References
[9–15]).
Providing that we may specify in some way the distribution of the mesh velocity w(x; t) in

�F(t) in accordance with the motion of �F(t), we may employ the following ALE description
of the Navier–Stokes equations as the governing equations of �uid motion [9] in �F(t):

∇ ·U=0 (37)

@tU + (U − w) · ∇U +∇P=�−∇ · ((�+ �t)(∇U +∇U T))=0 (38)

@tk + (U − w) · ∇k −∇ · ((�+ �t)∇k)= Sk (39)

@t�+ (U − w) · ∇�−∇ · ((�+ c��t)∇�)= S� (40)

The algorithm for ALE formulation in our incompressible solver NSIKE consists in the
following steps (see also Reference [31]):
Step 1: First of all, we will update the position of the moving part of the boundary (usually

�3h). This is done according to the �uid–structure interaction algorithm we are using, typically
we pass the new position (shape) of the structure computed separately (for instance, forced
movement or simple several degrees of freedom integration).
Then we have to compute the new mesh corresponding to the new shape of the domain

�F(t). Once the change in the position of boundary nodes �xw (nodes situated on the boundary
�) is known, we have to expand these variations overall the mesh. We have chosen to do
that using the following formula based on the distance of the mesh nodes xi to the boundary
nodes xw (see Reference [33]):

�xi=
1∫

� d�=|xi − xw|�
∫
�

�xw
|xi − xw|� d� (41)

where � is the �ow domain boundary and �¿2. The above approach proved to be more
robust when treating extremely �ne meshes than the approach based on solving a volumic
elasticity system to propagate the boundary deformation [19].
Finally, all the geometrical quantities have to be recomputed, including the mesh velocity

(i.e. the velocity of nodal movement):

wn+1
i =

1
�t
(xn+1i − xni ) (42)

Step 2: The intermediate velocity is now computed using the formulation

1
�t
(Mn+1Ũ n+1 −MnUn) + (Bn(Un − wn) + B∗n(Un))Un + CnUn −	n=0 (43)
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where

Mmn=(
i; j; 
k; l); Bmn=((Un
h − wn

h) · ∇
i; j; 
k;l) (44)

B∗
mn=

∑
K
(Un

h · ∇
i; j; gK
1 )K ; Cmn=((�+ �nt )(∇
i; j +∇
Ti; j);∇
k; l) (45)

∑
m
=
∫
�3h

Sn
t · n ·
k; l (46)

with m=(k − 1)d+ l and n=(i − 1)d+ j.
For k and � we have the following similar formulation:

1
�t
(Mn+1kn+1 −Mnkn) + (Bn(Un − wn) + B∗n(Un; kn))kn

+Cnkn − Sn
k (U

n; kn; �n)=0 (47)

1
�t
(Mn+1�n+1 −Mn�n) + (Bn(Un − wn) + B∗n(Un; �n))�n

+Cn�n − Sn
� (U

n; kn; �n)=0 (48)

where the matrices are de�ned as

Mij=( j;  i); Bij=((Un
h − wn

h) · ∇ j;  i); B∗
ij=

∑
K
(Un

h · ∇ j; gK
2 )K (49)

Cij=((�+ �nt )∇ j;∇ i); (Sk)i=(Sn
kh;  i); (S�)i=(Sn

�h;  i) (50)

The notation Mn+1, for example, indicates that the integrals in the computation of matrix
M components are computed over the domain �(t) at the instant t in time corresponding to
the n+ 1 step of our time integration loop.
As stated before, the mass matrices M are lumped to have completely decoupled explicit

system for Ũ n+1, kn+1 and �n+1, and corrections are introduced to take into account the
Dirichlet boundary conditions. Note that the velocity of the mesh w a�ects only the Galerkin
part of the convective term formulation [8].
Step 3: We solve on �n+1

h

Cn+1
n+1=Fn+1(Ũ n+1) (51)

where 
n+1 is the vector of nodal values of ’n+1
h , Cn+1

ij is de�ned as in (50) and

Fi=(∇ · Ũ n+1
h ;  i) (52)

together with corrections allowing to take into account the Dirichlet boundary conditions.
Step 4: Finally, we update the velocity �eld taking into account the pressure gradient:

Mn+1Vn+1=MnŨ n−Pn+1
n+1 (53)
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where Mn+1
mn is de�ned as in (44)

Pmi=(∇ i; 
k; l) (54)

where m=(k − 1)d+ l.
As boundary conditions even with ALE simulation we used wall-laws, where we computed

(Sm · nm · sm)n, kn+1
m and �n+1m from (um

� )
n which is computed solving directly (32). We have also

carried out tests using ALE formulation coupled with two-layer strategy for treating near wall
region, using the boundary conditions Um=w. These results con�rm rather well the results
obtained using wall-laws technique (see Reference [31]).
Here we have to remark that the CPU-time needed for one iteration of the numerical

simulation using ALE formulation is at least double with respect to the one needed when
using injection=suction boundary conditions instead. This very important increase in the cost
of the simulation is due to the need of recalculation of all geometrical quantities at each
iteration step of our solver NSIKE (based on explicit time integration).
One possibility to diminish the cost of ALE simulation would be to reconstruct the geometry

after each N time iteration steps, instead of doing it at each time step.
This is equivalent to an implicit ALE scheme where for each time step �t, we do a

sub-cycling with N �ow iterations with time step given by the stability condition dt, such
that N dt=�t. In that case, the cost of the ALE simulation becomes equivalent to the �xed
domain simulation cost plus the cost of the mesh deformation every N iterations.
Another important point considering ALE simulation is the eventual problem of mesh dis-

tortion. For a given problem, we can arrive at a mesh-independent solution giving a suitable
mesh, but if we subject this mesh to rotation of several degrees the mesh deformation, espe-
cially in the vicinity of sharp edges, this can lead to a certain loss in the accuracy.

3.3. Tests for injection=suction boundary conditions

3.3.1. NACA-0012 pro�le. The �rst test concerns the analysis of incompressible turbulent
attached �ow over a well-pro�led body such as NACA-0012 pro�le.
We consider the �ow at Rec=100 000, using NSIKE solver, with k–� model and wall-laws

with �=0:01c (where c is the pro�le chord) in wall-laws, giving y+ values between 20 and
30. The mesh used in the computations consisted in 2151 nodes and 4171 elements, although
we tested �ner meshes to establish the mesh dependence of results (no major di�erences were
observed with further re�nement—the �ow is incompressible and attached).
First, we analyse the �ow for the pro�le at incidence 2◦ and compare the results obtained

with the pro�le at incidence 0◦ and the change in the pro�le position taken into account
through the injection=suction boundary conditions (28), that we will refer as truncated formula,
and (29). The pressure distribution on the pro�le is shown in Figures 7 and 8. The computed
drag CD and lift CL coe�cients di�er in about than 10%.
For this case, we carried out the computations even with our compressible solver NSC2KE

[21] to see the e�ect of the numerical techniques speci�c for the incompressible solver NSIKE:
projection method and the boundary condition U · n treated in the strong sense (while in the
compressible case they are treated in the weak sense). The pressure distribution computed with
the injection=suction boundary conditions in the compressible solver agrees better with the 2◦

incidence solution, than when doing incompressible computations. Even more, the di�erences
between the truncated formula for U · n, and the complete injection=suction boundary condition
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Figure 7. NACA-0012 pro�le at incidence 2◦, Rec=100 000.
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Figure 8. NACA-0012 pro�le at incidence 2◦, Rec=100 000.
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Figure 9. NACA-0012 pro�le at incidence −2◦, Rec=100 000, u∗= u∞T=c=2.

are less important. And �nally, the di�erences in the computed drag CD and lift CL coe�cients
di�er in less than 5%. When analysing pressure distribution coming from the incompressible
solver NSIKE computations, we can remark that the deviation is the most important close to
the trailing edge (that can imply that the treatment of U · n in the strong sense at the trailing
edge is responsible for those problems).
The second test consisted in imposing a periodic movement to the pro�le

�(t)=A sin(2�t=Tm) (55)

where � is the angle of rotation around the center of gravity and A the amplitude (chosen 2◦)
and Tm the period of oscillations (we have chosen di�erent values). Here, we have performed
computations using both the ALE formulation and the injection=suction boundary conditions.
Typical oscillations of the moment coe�cient computed with di�erent techniques CM are
shown in Figure 9.
In Table I below, we have summarized the amplitudes and the phase shift of oscillations of

computed aerodynamic moment M (t)=M0 sin(2�fmt + �), computed using injection=suction
boundary conditions with respect to the ones computed using ALE formulation for di�erent
frequencies of imposed movement (u∗= u∞=cf= u∞T=c).

3.3.2. Rectangle pro�le. The next step is the analysis of unsteady incompressible turbulent
�ow over a rectangle pro�le (c=d=4) for Red=20000, already considered before.
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Table I. NACA-0012 pro�le in forced movement.

u∗=0:5 u∗=1:0 u∗=2:0 u∗=5:0 u∗=10:0

ALE M0, � M0, � M0, � M0, � M0, �

Injection=suction 1:29M0, 1:24M0, 1:2M0, 1:14M0, 1:05M0,
BCs � + 0:014T � + 0:018T � + 0:018T � + 0:02T � + 0:02T

Injection=suction 1:28M0, 1:22M0, 1:18M0, 1:145M0, 1:06M0,
BCs truncated � + 0:03T � + 0:032T � + 0:04T � + 0:044T � + 0:05T

Figure 10. Rectangle pro�le at incidence 2◦, Red=20 000.

Here we are interested in the �ow computed for that pro�le �xed at incidence 2◦ compared
to the one obtained with the pro�le at incidence 0◦ using injection=suction boundary conditions
to take into account the change in the pro�le position. The �ow over a rectangle pro�le is
unsteady, with multiple recirculation zones. This represents a more complex test for our
approximations in injection=suction boundary conditions than the completely attached �ow
over a NACA-0012 pro�le. The lift coe�cient CL obtained using injection=suction boundary
conditions is shown in Figures 10 and 11.
The solution for the pro�le �xed at 2◦ incidence gives �CL=0:075, while the result from

injection=suction boundary conditions is about �CL=0:015. The truncated formula for U0 · n0
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Figure 11. Rectangle pro�le at incidence 2◦, Red=20 000.

in injection=suction boundary conditions gives negative values of �CL=−0:09 with much more
unstable behaviour than the two other computations.

4. FLUID–STRUCTURE INTERACTION SIMULATIONS

After the �rst tests with injection=suction boundary conditions, we proceed with the analysis
of the response of the structure to forced oscillations. The second step is the analysis of the
behaviour of the structure when associated with a simple dynamical model with two degrees
of freedom.

4.1. Forced movement

When studying dynamical behaviour of a �uid–structure system, one approach consists of
analysing the response of the system to forced perturbation without taking into account any
dynamics model. In this approach, we impose a movement for the bridge or viaduct cross-
section and the hysteresis curves are used to predict the response of the real elastic system
by means of engineering criteria (see Reference [1]).
In the context of forced movement, we consider a rectangular viaduct cross-section with

width/height ratio c=d=4 for which experimental results are available.
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Figure 12. Torsional oscillations.

4.1.1. Torsional oscillations for rectangle pro�le. We prescribe a periodic torsional
oscillation around the cross-section centre of gravity (Figure 12):

xm=R(t)x0; (nm=R(t)n0) (56)

where R(t) is a rotation matrix:

R(t)=

[
cos � − sin �

sin � cos �

]
(57)

The angle of rotation is de�ned as �(t)= �0 cos(2�t=Tm), where �0 is chosen 1:91◦ and the
period of oscillations Tm is chosen to have values of u∗= u∞=dfm= u∞Tm=d ranging from 5
to 40.
Engineering criterium (e.g. the theory of Scanlan, see Reference [1]) used to estimate the

stability of the cross-section pro�le is based on the extraction of the response of the system
(here, the aerodynamic moment Mm) at the perturbation frequency fm=1=Tm:

Mm(t)=M0 cos(2�fmt + �) (58)

We compute [
am

bm

]
=

1
NTm

∫ NTm

−NTm
M (t)

[
cos(2�fmt)

sin(2�fmt)

]
dt (59)

where M (t) is the obtained aerodynamic moment.
The comparison of the computed coe�cients

CmR=
am

1
2�|u∞|2c2l ; CmI =

−bm
1
2�|u∞|2c2l (60)

with the experimental results is given in Figures 13 and 14.
The response of the system at the perturbation frequency is estimated as [1–3]:

Mm(t)=
1
2
�|u∞|2c2l

(
CmR

�0
�(t) +

CmI

�02�fm
�̇(t)

)
(61)

where the system is unstable when the coe�cient CmI becomes positive.
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Figure 13. Torsional oscillations, rectangle pro�le, Red=20 000, CmR vs u∗= u∞=df .

Figure 14. Torsional oscillations, rectangle pro�le, Red=20 000, CmI vs u∗= u∞=df .
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Figure 15. Torsional oscillations for rectangle pro�le, Red=20 000, u∗= u∞=df =5.

When analysing the results of numerical simulations, the diagram of main interest is
the one presenting the values of CmI coe�cient with respect to di�erent frequencies of
forced movement, i.e. di�erent values of non-dimensionalized velocity u∗= u∞=df ,
Figure 14.
It is important to remark that even the experimental results seem contradictory, because

of the fact that for big values of u∗ (quasi-static situation) the coe�cient CmI values should
have zero as an asymptotic value. The results from three simulations, using ALE formulation,
using injection=suction boundary conditions with truncated formula for U · n, and using the
complete injection=suction boundary conditions, vary signi�cantly. Nevertheless, there is bet-
ter agreement between complete injection=suction boundary conditions with ALE formulation
simulations (the trends seem rather similar).
On the other hand, both, tests carried out before for injection=suction boundary conditions,

together with these results, indicate that the truncated formula for U · n seems not to be a
good approximation for these vortex shedding �ows, except for high frequency perturbations,
i.e. when the term w · nm dominates in (29). However, when treating attached �ows like
�ows over NACA airfoils, there is less di�erences between two injection=suction formula for
U · n.
The e�ect of neglecting the term ∇U in injection=suction boundary conditions for U · n can

be seen in Figures 15 and 16.
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Figure 16. Torsional oscillations for rectangle pro�le, Red=20 000, u∗= u∞=df =8.

4.2. Rigid body dynamics for structure

The second step is an attempt to take into account the realistic dynamic behaviour of the
system. This is done through the following two DOF system:

J
d2X
dt2

+ C
dX
dt
+ K(X − X 0)=F (62)

where X=[y; �]T (X 0 being the initial con�guration) the torsional rotation and vertical dis-
placement, F=[FL; FM ]T are the corresponding aerodynamic forces. J , C and K describe the
mechanical characteristics of the structure:

J=

[
m S�

S� I�

]
; C=

[
cy 0

0 c�

]
; K =

[
ky 0

0 k�

]

where m and I� are the mass and the inertial moment of the pro�le, S� is the static moment
of the pro�le, cy, c� are the damping coe�cients, and ky, k� are the sti�ness coe�cients.
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Figure 17. Fluid–structure interaction algorithm.

We use the Newmark’s method (the trapezoidal rule) for the integration in time of the
system (62):

Ż(t) =f(t; Z)

Z(t=0)= Z0
(63)

where

Z =

[
X

Ẋ

]

are the new variables, and

f(Z; t)=

[
Ẋ

J−1F − J−1CẊ − J−1KX

]

The numerical scheme is

Z0 = Z(t=0)

Zn+1 = Zn +
t
f(tn; Zn) + f(tn+1; Zn+1)

2

(64)

In the context of injection=suction boundary conditions, at each time step we use the pre-
dicted lift and moment aerodynamic coe�cients to advance in time the system (64) and use
the values of the displacements X to provide the new boundary condition for (u0 · n0) as
indicated schematically in Figure 17.

4.2.1. Fluid–structure interaction simulation for rectangle pro�le. We analysed the same
rectangular pro�le used in the forced movement computations (c=d=4). For the mechanical
characteristics of this pro�le (see also Reference [31]) we have chosen the ones representing
a ‘rough’ approximation of the bridge over Rio Niteroi in Brazil (with d=3m): m=20 tm−1,
ky=m!2y, !y=2�fy=20s−1, I�=400 tm, k�= I�!2�, !�=2�f�=50s−1 and the damping co-
e�cients cy, c� were neglected, as well as the coupling of the vertical and torsional oscillations
(S�). We used maximum wind velocities u∞=150 km h−1, giving Red ≈ 107.
Here we present only the results obtained for one degree of freedom, angle of rota-

tion �, in order to compare them to the stability analysis in the case of imposed torsional
oscillations [1–3]. More results for the system with two degrees of freedom can be found
in Reference [31].
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Figure 18. Fluid–structure interaction simulation, Red=107, u∗� = u∞=df�=1:75. Computations
with original mechanical characteristics.

Figure 19. Fluid–structure interaction simulation, Red=107, u∗� = u∞=df�=8:75, I�=40 t m,
!�=10 s−1. ALE simulation and injection=suction boundary conditions predict similar regime.
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Figure 20. Fluid–structure interaction simulation, Red=107, u∗� = u∞=df�=8:75, I�=40 t m, !�=10 s−1.
Long time simulation using injection=suction boundary conditions.

Figure 21. Fluid–structure interaction simulation, Red=107, u∗� = u∞=df�=87:5, !�=1s−1. Both, ALE
simulation and injection=suction boundary conditions predict similar unstable regime.
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Figure 22. Fluid–structure interaction simulation, Red=107, u∗� = u∞=df�=87:5, !�=1 s−1. Long time
simulation using injection=suction boundary conditions.

Figure 23. Fluid–structure interaction simulation, Red=107, u∗� = u∞=df�=87:5, I�=40 tm, !�=1s−1.
Decreasing of moment of inertia increases the displacement, and ampli�es the instability.
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The original mechanical characteristics represent stable con�guration and the torsional dis-
placement is extremely small (see Figure 18). In that case, the values computed using ALE
formulation coincide with the ones computed using injection=suction boundary conditions.
Since we wanted to compare the behaviour of injection=suction boundary conditions to ALE
formulation, we carried out several simulations decreasing the moment of inertia I� of the
cross-section (to increase the amplitude of oscillations), and !� (to get less stable pro-
�le). In the captions of Figures 19–23, the quantities di�ering from the original values are
de�ned.
As it can be seen from the results presented in Figures 18–23, similar trends are predicted

using injection=suction boundary conditions and ALE formulation. This is consistent with the
same qualitative behaviour observed when analysing the response to forced movement (see
Figure 14) by those two methods. The results from �uid–structure interaction simulations con-
�rm the results related to the stability of the pro�le, coming out from the forced movement
analysis.

5. CONCLUSIONS

We developed a framework for the analysis of �uid–structure interaction problems in civil
engineering applications (e.g. bridge and viaduct cross-sections) based on injection=suction
boundary conditions.
In the stability analysis of civil engineering constructions, it is usually necessary to carry

out a large number of instationary computations for di�erent parameter values, both in a
case of a study based on imposed movement of the structure, or when we employ a sim-
ple dynamics model for the structure. The approach based on the injection=suction boundary
conditions presents a considerable reduction in the computational cost with respect to the
ALE formulation, and the results presented in this study show rather good agreement with
the experiments and ALE formulation (the trends seem to be predicted very well). How-
ever, for vortex shedding �ows our results show that the truncated formula for U · n in the
injection=suction boundary conditions does not lead to satisfactory results, except in special
situations (e.g. high frequencies of forced movement).
Finally, although here we have analysed mostly small amplitude movements, an important

thing to remark is that in stability analysis, this already covers a range of signi�cant interest for
the detection of instabilities, giving another argument in favour of the use of injection=suction
boundary conditions for these purposes.
Thus, the presented results suggest the potential usefulness of injection=suction boundary

conditions in practical engineering computations, although more comprehensive studies are
called for to precisely determine the limits of applicability.
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